

UNIT V

Python Functions is a block of statements that return the specific task. The idea is to put some

commonly or repeatedly done tasks together and make a function so that instead of writing the

same code again and again for different inputs, we can do the function calls to reuse code

contained in it over and over again.

Some Benefits of Using Functions

 Increase Code Readability

 Increase Code Reusability

Python Function Declaration

The syntax to declare a function is:

Syntax of Python Function Declaration

Types of Functions in Python

There are mainly two types of functions in Python.

 Built-in library function: These are Standard functions in Python that are available to

use.

 User-defined function: We can create our own functions based on our requirements.

Creating a Function in Python

We can create a user-defined function in Python, using the def keyword. We can add any type of

functionalities and properties to it as we require.

A simple Python function

def fun():

 print("Welcome to GFG")

Calling a Python Function

After creating a function in Python we can call it by using the name of the function followed by

parenthesis containing parameters of that particular function.

A simple Python function

def fun():

 print("Welcome to GFG")

Driver code to call a function

fun()

Output:

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-built-in-functions/

Welcome to GFG

Python Function Arguments

Arguments are the values passed inside the parenthesis of the function. A function can have any

number of arguments separated by a comma.

In this example, we will create a simple function in Python to check whether the number passed

as an argument to the function is even or odd.

A simple Python function to check

whether x is even or odd

def evenOdd(x):

 if (x % 2 == 0):

 print("even")

 else:

 print("odd")

Driver code to call the function

evenOdd(2)

evenOdd(3)

Output:

even

odd

Types of Python Function Arguments

Python supports various types of arguments that can be passed at the time of the function call. In

Python, we have the following 4 types of function arguments.

 Default argument

 Keyword arguments (named arguments)

 Positional arguments

 Arbitrary arguments (variable-length arguments *args and **kwargs)

Let’s discuss each type in detail.

Default Arguments

A default argument is a parameter that assumes a default value if a value is not provided in the

function call for that argument. The following example illustrates Default arguments.

Python program to demonstrate

default arguments

def myFun(x, y=50):

 print("x: ", x)

 print("y: ", y)

Driver code (We call myFun() with only

argument)

myFun(10)

Output:

x: 10

y: 50

Python Function within Functions

A function that is defined inside another function is known as the inner function or nested

function. Nested functions are able to access variables of the enclosing scope. Inner functions are

used so that they can be protected from everything happening outside the function.

Python program to

https://www.geeksforgeeks.org/default-arguments-in-python/

demonstrate accessing of

variables of nested functions

def f1():

 s = 'I love GeeksforGeeks'

 def f2():

 print(s)

 f2()

Driver's code

f1()

Output:

I love GeeksforGeeks

Anonymous Functions in Python

In Python, an anonymous function means that a function is without a name. As we already know

the def keyword is used to define the normal functions and the lambda keyword is used to create

anonymous functions.

Python code to illustrate the cube of a number

using lambda function

def cube(x): return x*x*x

cube_v2 = lambda x : x*x*x

print(cube(7))

print(cube_v2(7))

https://www.geeksforgeeks.org/python-lambda-anonymous-functions-filter-map-reduce/

Output:

343

343

Return Statement in Python Function

The function return statement is used to exit from a function and go back to the function caller

and return the specified value or data item to the caller. The syntax for the return statement is:

return [expression_list]

The return statement can consist of a variable, an expression, or a constant which is returned at

the end of the function execution. If none of the above is present with the return statement a

None object is returned.

Example: Python Function Return Statement

def square_value(num):

 """This function returns the square

 value of the entered number"""

 return num**2

print(square_value(2))

print(square_value(-4))

Output:

4

16

	Python Function Declaration
	Types of Functions in Python

	Creating a Function in Python
	Calling a Python Function

	Python Function Arguments
	Types of Python Function Arguments
	Default Arguments

	Python Function within Functions
	Anonymous Functions in Python
	Return Statement in Python Function

